3.1969 \(\int \frac{d+e x}{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\)

Optimal. Leaf size=118 \[ \frac{8 e \left (a e^2+c d^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^3 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{2 (d+e x)}{3 \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

[Out]

(-2*(d + e*x))/(3*(c*d^2 - a*e^2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (8*e*(c*d^2 + a*e^2 + 2*c*d
*e*x))/(3*(c*d^2 - a*e^2)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0498806, antiderivative size = 118, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.057, Rules used = {638, 613} \[ \frac{8 e \left (a e^2+c d^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^3 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{2 (d+e x)}{3 \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x))/(3*(c*d^2 - a*e^2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (8*e*(c*d^2 + a*e^2 + 2*c*d
*e*x))/(3*(c*d^2 - a*e^2)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 638

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b*d - 2*a*e + (2*c*d -
b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] - Dist[((2*p + 3)*(2*c*d - b*e))/((p + 1)*(b^2
- 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] && NeQ[b^
2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2]

Rule 613

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[(-2*(b + 2*c*x))/((b^2 - 4*a*c)*Sqrt[a + b*x
 + c*x^2]), x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{d+e x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx &=-\frac{2 (d+e x)}{3 \left (c d^2-a e^2\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{(4 e) \int \frac{1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 \left (c d^2-a e^2\right )}\\ &=-\frac{2 (d+e x)}{3 \left (c d^2-a e^2\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{8 e \left (c d^2+a e^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0566876, size = 90, normalized size = 0.76 \[ \frac{2 (d+e x) \left (3 a^2 e^4+6 a c d e^2 (d+2 e x)+c^2 d^2 \left (-d^2+4 d e x+8 e^2 x^2\right )\right )}{3 \left (c d^2-a e^2\right )^3 ((d+e x) (a e+c d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(2*(d + e*x)*(3*a^2*e^4 + 6*a*c*d*e^2*(d + 2*e*x) + c^2*d^2*(-d^2 + 4*d*e*x + 8*e^2*x^2)))/(3*(c*d^2 - a*e^2)^
3*((a*e + c*d*x)*(d + e*x))^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.045, size = 146, normalized size = 1.2 \begin{align*} -{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( ex+d \right ) ^{2} \left ( 8\,{c}^{2}{d}^{2}{e}^{2}{x}^{2}+12\,acd{e}^{3}x+4\,{c}^{2}{d}^{3}ex+3\,{a}^{2}{e}^{4}+6\,ac{d}^{2}{e}^{2}-{c}^{2}{d}^{4} \right ) }{3\,{a}^{3}{e}^{6}-9\,{a}^{2}c{d}^{2}{e}^{4}+9\,a{c}^{2}{d}^{4}{e}^{2}-3\,{c}^{3}{d}^{6}} \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x)

[Out]

-2/3*(c*d*x+a*e)*(e*x+d)^2*(8*c^2*d^2*e^2*x^2+12*a*c*d*e^3*x+4*c^2*d^3*e*x+3*a^2*e^4+6*a*c*d^2*e^2-c^2*d^4)/(a
^3*e^6-3*a^2*c*d^2*e^4+3*a*c^2*d^4*e^2-c^3*d^6)/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(5/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 16.3236, size = 614, normalized size = 5.2 \begin{align*} \frac{2 \,{\left (8 \, c^{2} d^{2} e^{2} x^{2} - c^{2} d^{4} + 6 \, a c d^{2} e^{2} + 3 \, a^{2} e^{4} + 4 \,{\left (c^{2} d^{3} e + 3 \, a c d e^{3}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{3 \,{\left (a^{2} c^{3} d^{7} e^{2} - 3 \, a^{3} c^{2} d^{5} e^{4} + 3 \, a^{4} c d^{3} e^{6} - a^{5} d e^{8} +{\left (c^{5} d^{8} e - 3 \, a c^{4} d^{6} e^{3} + 3 \, a^{2} c^{3} d^{4} e^{5} - a^{3} c^{2} d^{2} e^{7}\right )} x^{3} +{\left (c^{5} d^{9} - a c^{4} d^{7} e^{2} - 3 \, a^{2} c^{3} d^{5} e^{4} + 5 \, a^{3} c^{2} d^{3} e^{6} - 2 \, a^{4} c d e^{8}\right )} x^{2} +{\left (2 \, a c^{4} d^{8} e - 5 \, a^{2} c^{3} d^{6} e^{3} + 3 \, a^{3} c^{2} d^{4} e^{5} + a^{4} c d^{2} e^{7} - a^{5} e^{9}\right )} x\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

2/3*(8*c^2*d^2*e^2*x^2 - c^2*d^4 + 6*a*c*d^2*e^2 + 3*a^2*e^4 + 4*(c^2*d^3*e + 3*a*c*d*e^3)*x)*sqrt(c*d*e*x^2 +
 a*d*e + (c*d^2 + a*e^2)*x)/(a^2*c^3*d^7*e^2 - 3*a^3*c^2*d^5*e^4 + 3*a^4*c*d^3*e^6 - a^5*d*e^8 + (c^5*d^8*e -
3*a*c^4*d^6*e^3 + 3*a^2*c^3*d^4*e^5 - a^3*c^2*d^2*e^7)*x^3 + (c^5*d^9 - a*c^4*d^7*e^2 - 3*a^2*c^3*d^5*e^4 + 5*
a^3*c^2*d^3*e^6 - 2*a^4*c*d*e^8)*x^2 + (2*a*c^4*d^8*e - 5*a^2*c^3*d^6*e^3 + 3*a^3*c^2*d^4*e^5 + a^4*c*d^2*e^7
- a^5*e^9)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.25617, size = 497, normalized size = 4.21 \begin{align*} \frac{2 \,{\left ({\left (4 \,{\left (\frac{2 \,{\left (c^{3} d^{4} e^{3} - a c^{2} d^{2} e^{5}\right )} x}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}} + \frac{3 \,{\left (c^{3} d^{5} e^{2} - a^{2} c d e^{6}\right )}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )} x + \frac{3 \,{\left (c^{3} d^{6} e + 5 \, a c^{2} d^{4} e^{3} - 5 \, a^{2} c d^{2} e^{5} - a^{3} e^{7}\right )}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )} x - \frac{c^{3} d^{7} - 7 \, a c^{2} d^{5} e^{2} + 3 \, a^{2} c d^{3} e^{4} + 3 \, a^{3} d e^{6}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )}}{3 \,{\left (c d x^{2} e + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

2/3*((4*(2*(c^3*d^4*e^3 - a*c^2*d^2*e^5)*x/(c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 +
a^4*e^8) + 3*(c^3*d^5*e^2 - a^2*c*d*e^6)/(c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^
4*e^8))*x + 3*(c^3*d^6*e + 5*a*c^2*d^4*e^3 - 5*a^2*c*d^2*e^5 - a^3*e^7)/(c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2
*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8))*x - (c^3*d^7 - 7*a*c^2*d^5*e^2 + 3*a^2*c*d^3*e^4 + 3*a^3*d*e^6)/(c^4*d^
8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8))/(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)^
(3/2)